
FP6-NEST-PATH project no: 29085
Report Version: 1

Report Preparation Date: May 25, 2007
Classication: Pub.
Deliverable no. 2.1

Closing the Loop of Sound Evaluation and Design
(CLOSED)

Deliverable 2.1

Algorithms for
Ecologically-Founded Sound Synthesis:

Library and Documentation

Stefano Delle Monache, Delphine Devallez, Carlo Drioli,
Federico Fontana, Stefano Papetti, Pietro Polotti,

Davide Rocchesso (UNIVERONA)

This is a trick ...

Physically-based

Sound Design Tools

User’s Guide
version 0.4

VIPS group - University of Verona
project CLOSED [FP6-2004-NEST-PATH]

http://closed.ircam.fr

http://closed.ircam.fr

4

Contents

1 Low-level models 5

1.1 Solids contact . 5

1.1.1 linpact inertialb modalb∼ . 9

1.1.2 linpact 2modalb∼ . 11

1.1.3 impact inertialb modalb∼ . 14

1.1.4 impact 2modalb∼ . 16

1.1.5 impact inertialb wg∼ . 19

1.1.6 impact modalb wg∼ . 21

1.1.7 friction 2modalb∼ . 24

1.1.8 friction modalb wg∼ . 28

1.2 Liquids . 31

1.2.1 onebubble∼ . 32

2 Higher-level models 33

2.1 Solids . 33

2.1.1 Bouncing . 33

2.1.2 control crump . 35

2.2 Liquids . 38

2.2.1 bubblestream∼ . 39

2.2.2 splash∼ . 41

GNU Free Documentation License 42

References 48

This is a trick ...

Introduction

The Physically-based Sound Design Tools (SDT from now on) aims at providing perception-oriented
and physically-coherent advanced tools for the next generation of sound designers.

The SDT package is the main software product of a project activity which begun in 2001 with the
EU project SOb - the Sounding Object [3]. In continuous development, the SDT package inherits ba-
sic theoretical concepts of sound synthesis initiated with the physical analysis of impact sounds, later
complemented with more low-level physically-based sound models (such as friction) and further pro-
vided with higher level synthesis paradigms, integrating low-level models into more elaborate synthesis
contexts (such as rolling and crumpling).

Such theoretical concepts found early realizations in the form of pure data patches and externals
for Linux and Windows which had to be ad hoc compiled. In SDT all externals have been thoroughly
revised and rewritten to comply with the multi-OS programming layer flext and to run in the Max/MSP
environment. Moreover, the adoption of Max/MSP has allowed to restyle the early pure data patches
in order to create more accessible, usable sound synthesis controls and better online documentations.

The SDT package is maintained and continuously developed by the UNIVERONA (VIPS group)
unit of the EU project CLOSED - Closing the Loop Of Sound Evaluation and Design.

The basic (low-level) algorithms, the corresponding externals and some example patches are de-
scribed in Chapter 1.

Higher level algorithms, based on the basic ones, are described in Chapter 2. In some cases the
higher level algorithms are just implemented as Max/MSP patches which exploit the basic externals;
in others they rely on both low-level and additional externals.

Externals descriptions are easily identifiable by boxed titles .
Throughout this manual we follow the Mac OS X (or UNIX) file-system conventions: e.g. paths are

expressed with slashes “/”. Of course Windows users just need to consider back-slashes “\” instead
of slashes.

How to use the SDT package

The SDT package is split into three main sections (corresponding to subdirectories): source code
(under /SDT_sources), Max/MSP patches (under /SDT_patches) and, for the faint hearted, pre-
compiled Max/MSP externals for both Mac OS X1 and Windows (under /SDT_binaries).

All main source files are coded in C++ (while some other auxiliary files are coded in C) using flext2,
a layer for cross-platform development of Max/MSP and pure data externals. This means that, with
minimum effort, one can build the SDT package on Mac OS X, Windows and Linux platforms, this
way getting externals for Max/MSP or pure data. In other words, although this manual is oriented
towards Max/MSP, still sound designers keen on pure data can build the very same externals for their
application of choice. Unfortunately though, the SDT package only include patches for Max/MSP.

Building flext

Despite the provided Max/MSP externals being ready for use, dauntless users would surely like
to build their own ones. Other users may want to modify some of the provided externals, therefore

1Mac OS X externals are in universal binary format, that is they are compatible with both PPC and Intel Macs
2http://grrrr.org/ext/flext/

1

http://grrrr.org/ext/flext/

they would need to alter the corresponding source code, and then build their updated externals from
scratch.

For all these advanced users the first thing to do is to download and install the Max/MSP Software
Development Kit (SDK) from http://www.cycling74.com/downloads/maxmsp.

Secondly, it is necessary to download and install flext. At the time of writing, the version of flext
required to correctly build the SDT package is only available as CVS check-out (starting with the
current v0.5.1, any bleeding edge version should fit).

If your OS is Windows and you are not using cygwin, make sure that the option “use UNIX line
endings” (or the like) of your CVS client is checked. If you don’t know how to do that, and your client
does not do it by default, after having checked-out flext you’d most likely need to open3 all text-type
files lying inside the directory /flext and its subdirectories, change all line endings to UNIX style,
and save them.

Here are all the informations needed in order to check-out the CVS version of flext with any CVS
client:

Protocol: :pserver:

User name: anonymous

Server: pure-data.cvs.sourceforge.net

Repository directory: /cvsroot/pure-data

Module: externals/grill/flext

Once the check-out is finished, it is necessary to configure, build and install flext on your ma-
chine. Please refer to the files readme.txt and build.txt inside the directory /flext of your flext
distribution for detailed instructions on how to do that.

Building the SDT package

All source files lie inside the directory /SDT_sources (under /Solids and /Liquids).
To each external corresponds a .txt file containing instruction for the compiler and being used

by flext own build system. In flext-based distributions, the default name for this kind of file is
package.txt so that, when invoking the build batch-file, you don’t have to specify its name. However,
since SDT is made up of many externals which often share the same source files, we opted for putting all
shared sources together, providing a EXTERNAL_NAME.txt file for each external. Hence, when invoking
flext build batch-file it is necessary to add the macro ‘‘PKGINFO=EXTERNAL_NAME.txt’’ (including
quotation marks) at the end of your sequence of instructions.

Hint 1: In order to refer to them more quickly, you can rename each package-type .txt file as you
wish, e.g. with progressive numbers: 1.txt, 2.txt, etc..

Hint 2: The easiest way to compile the externals is to copy the whole directory /SDT_sources under
the directory /flext of your flext distribution. Then it will be straightforward to invoke flext
build batch-file as:

sh ../build.sh

from bash shell, or

..\build

3With a suitable text editor like the free Notepad++ (http://notepad-plus.sourceforge.net/)

2

http://www.cycling74.com/downloads/maxmsp
http://notepad-plus.sourceforge.net/

from DOS command prompt.

Example 1: To build the external impact 2modalb∼ with gcc under Mac OS X, just open the terminal,
go inside /SDT_sources and write:

sh ../build.sh max gcc "PKGINFO=impact_2modalb~.txt"

or change ../build.sh accordingly to the specific path of your flext distribution. Then you’ll
find the compiled external within the directory /max-darwin under /SDT_sources.

Example 2: To build the external onebubble∼ with Microsoft Visual Studio under Windows, open
the Visual Studio Command Prompt, go inside \SDT_sources and write:

..\build max msvc "PKGINFO=onebubble~.txt’’

or change ..\build accordingly to the specific path of your flext distribution. Then you’ll find
the compiled external within the directory \max-msvc under \SDT_sources

Installing the SDT package

To install the SDT package:

1. Copy all the externals for your OS into Max/MSP /externals directory or, provided that you
update accordingly Max/MSP preferences, into your directory of choice.

2. Copy all .help files found under /SDT_patches and subdirectories into Max/MSP /max-help
directory.

3. Start using the SDT by double-clicking on any .mxb example patch under /SDT_patches and
have fun!

3

This is a trick ...

1 Low-level models

Basic models for solids-contact and liquids sound events are presented. After some theory, externals
which implement the models and some example patches are described.

We will see in Chapter 2 how these basic models serve as a basis for more complex sound events,
textures and processes.

1.1 Solids contact

The models considered here apply to basic contact events between two solid objects. As the most
relevant contact sound events in everyday life come down to impacts and frictions, the provided
externals model these two kinds of interactions.

The algorithms implemented here share a common structure: two solid object models interact
through (what we call) an interactor (see Fig. 1.1).

Figure 1.1: The common structure underlying solid contact algorithms.

Contact models

An interactor represents a contact model or, so to say, the “thing” between the two interacting
objects. As for the impact model, it can be seen as the “felt” between the striking object and the
struck object, while in the friction model it simulates friction as if the surfaces of the two rubbing
objects would be covered with “micro-bristles”.

Two impact models (one of which is a simplified version) and a friction model are provided:

impact interactor - implements a non-linear impact force. It receives the total compression (the
difference of displacements of the two interacting objects at interaction point) and returns the
computed impact force.
The latter is made of the sum of an elastic component and a dissipative one. The elastic
component is parameterized by the force stiffness (or elasticity) and a non-linear exponent

5

which depends on the local geometry around the contact area. The dissipative component
is parameterized by the force dissipation (or damping weight). For further details refer to [3].

simplified impact interactor - implements a linear impact force. As it is a linearized version of the
impact interactor described above, the non-linear exponent is not present (or, equivalently, is
equal to 1), while the force stiffness and the force dissipation still remain.

friction interactor - implements a non-linear friction force. It receives the relative velocity of the two
rubbing objects and returns the computed friction force.
The latter is made of the sum of four components, each of them corresponding to one coefficient.
These are: an elasticity coefficient, an internal dissipation coefficient, a viscosity coefficient, and
finally the gain of a pseudo-random function (noise related to surface roughness). The model
is parametrized by several others quantities: the dynamic friction and the static friction coeffi-
cients, a break-away coefficient and the Stribeck velocity (both of them relate to the transient).
For further details refer to [3].

Object models

Three distinct object models are provided:

modal object - in the modal description, a resonating object is described as a system of a finite
number of parallel mass-spring-damper structures. Each mass-spring-damper structure models
a mechanical oscillator which represents a normal mode of resonance of the object. The oscillation
period, the mass and the damping coefficient of each oscillator correspond respectively to the
resonance frequency, the gain and the decay time of each mode.
In our implementation it is possible to choose the wanted number of modes and to separately
control their properties. Furthermore, each modal object has a number of pickup points, from
which the sound is output. There must be at least one pickup point but they must be less than
the number of modes. The first pickup point is also where the contact takes place (interaction
point).

inertial object - simulates a simple inertial point mass. Obviously this kind of objects is useful solely
as an exciter for other resonators.
The only settable object property is its mass.

waveguide object - the digital waveguide technique [4] models the propagation of waves along elastic
media. In the one-dimensional case implemented here [2], the waveguide object models an ideal
elastic string.
In our implementation it is possible to set length, tension and mass of the string. Further, one
can set the position of the interaction point along its length. The interaction point coincides
with the only available pickup point (i.e. the place from where the sound is output).

Generalities

Having a look at Fig. 1.1, the way two objects interact through an interactor appears evident: at
each discrete time instant (sample) both objects send their internal states (displacement and velocity
at the interaction point) to the interactor, which in turn sends the newly computed (opposite) forces
to the objects. Knowing the new applied forces, the objects are able to compute their new states for
the next time instant. In other words, there’s a feedback communication between the three models.

The SDT framework differs remarkably from the approach to physically-based sound synthesis
found in most existing implementations and literature. Being this not the seat for an exhaustive and
analytical dissertation and comparison, of interest is the IRCAM software Modalys [1], a powerful
physical modeling interactive tool for musical applications, based on modal synthesis.

6

The Modalys working space is characterized by a modular set of modal objects, such as tubes,
membranes, strings, “two-mass” objects and hybrids; types of linear connections, that is types of
interactions between objects; controllers, that specify exactly how the connections will be executed;
“accesses”, that set the physical location of the connection on a Modalys object in order to interact
with other objects.

Recently, Modalys developments included the possibility to create three dimensional meshes and
to compute their modes by finite elements numerical methods.

Available classes of modal objects include the following opcodes: “bi-string”, a string or rod whose
vibration moves in two transverse directions; “cello-bridge”; “circ-membrane”, a circular membrane
with zero thickness; “clamped-circ-membrane”, a circular plate fixed at its edges; “closed-closed-
tube”, an acoustic tube sealed at both ends; “closed-open-tube”, an acoustic tube sealed at one end
and opened at the other; “melt-hybrid” and “mix-hybrid” that create a hybrid of two different objects.
The latter can be seen as a box with the two objects inside, with a sound mix of the two objects, whose
excitation transmits energy to the sub-objects in proportion to the current position of the hybrid.

Connections-interactions can be modularly set on each object. Among the others, the relative
opcodes includes: “adhere”, adherence between two accesses; “bi-fingerboard”, that simulates the
interaction between a finger and a string with a fingerboard underneath; “bow”, a two dimensional
connection between four accesses; “hole”, that makes a hole of variable diameter in an acoustic tube;
“pluck”, where one access plucks another one; “position”, for changing the access position along its
axis. At last, controllers include noise generators, break-point envelope functions, filters, oscillators
and arithmetical operators.

It can be noticed how types of objects and interactions already form parametrically high level
subclasses to be connected in order to achieve more complex virtual musical instruments.

As far as the interaction structures are concerned, a main difference between the SDT package
and Modalys resides in the feed-forward structure of the latter: in Modalys a form exciter ↔
resonator is adopted, where non-linearities are concentrated in the interaction part of a structure
(e.g. blow, bow, etc.).

Bearing in mind the musical purposes conception of Modalys, elements like key noise for an acoustic
tube are sometimes simulated by means of a usual random generator, rather than actually being
calculated as a physical result of other stimuli.

On the contrary, the SDT package takes advantage of a cartoonified approach in sound design and
implements a feedback network within the interaction object1 ↔ interactor ↔ object2, with non-
linear characteristics of the interactor. This allows the accurate modeling of complex interactions (e.g
friction) and to output the sound of both the interacting objects. Besides, the continuous feedback
approach adopted into the SDT is memory consistent, that is the system takes record of each previous
state, during the interaction and manipulation. Secondly, the SDT package implements low level
models that are already capable of all possible issues and interactions, with an open and wide variety
of sound possibilities, and a consistent physical behavior.

Externals conventions

According to the described framework, the naming of each external conforms to the general form
interactor object1 object2∼.

The linear impact interactor is referred as linpact, the non-linear impact interactor as impact, while
the friction interactor is referred as friction.

The modal and the inertial objects are respectively referred as modalb and inertialb1, while the
waveguide object is referred as wg. The only naming exception happens when two modal objects
interact, in which case the whole object1 object2 section becomes 2modalb.

1The ending b is just a reminder for developers which tells that the bilinear transformation has been used in order to
discretize the objects’ continuous-time equations.

7

Notice that object1 is always either a modal or an inertial object. This is because those are the
only objects which are able to move: as already said, an inertial object behaves as a point mass, while
the first mode of a modal object1 is its inertial mode, that is the whole object behaves as a mass-
spring-damper structure. In both cases it is therefore possible to make object1 move (e.g. imposing
an external force or an initial velocity on it) so that it starts interacting with object2.

As modal objects have a variable number of modes and pickup points, when an external involves
a modal object the arguments are of variable length and composition. Moreover, each pickup point
corresponds to a signal outlet, therefore outlets of such externals are also in variable number.

In the following externals descriptions, elements which are in variable number are underlined. If
applicable, each argument type is followed by the name of the element (interactor, object1, object2) it
refers to.

Help patch conventions

The best way to understand how the supplied externals work is to have a look to their help patches.
Just be sure to put them under Max/MSP /max-help directory to have access to them when invoking
the help.

Figure 1.2: Solids contact example (help) patch

All help patches share a common structure (cfr. Fig. 1.2): the control panels on the left and
right sides (orange backgrounds) are respectively for object1 and object2, those in the center (green
background) are for the interactor.

Control panels for object1 only operate on a subset of its own properties (basically for screen space’s
sake), yet they allow to trigger the contact with object2. Conversely, the control panels provided for
the interactor and object2 operate on the whole set of their available physical-geometric properties.

8

1.1.1 linpact inertialb modalb∼

Linear impact between one inertial and one modal object.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial strike velocity.

list: [3×float] 5th inlet. The first two arguments are respectively the interactor’s
force stiffness and damping coefficient.
The third is the mass of object1.

list: [3×float] object2 6th inlet. Base (global) factors. These multiply respectively: the
frequency, the decay time and the gain of all modes.

list: [float] object2 7th inlet. As many arguments as the number of modes.
Frequency of each mode.

list: [float] object2 8th inlet. As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object2 9th inlet. The int value indicates the considered pickup point. The
subsequent list of float values sets the gain of each mode at the
specified pickup point.

strike object1 1st inlet. Followed by a float value, sets the initial strike velocity.

nteract strikr 1st inlet. Followed by three float values. The first two set respec-
tively the interactor’s force stiffness and damping coefficient. The
third sets the mass of object1.

actmodes2 object2 1st inlet. Followed by one int value which sets the number of
currently active modes. Obviously the maximum number of active
modes must be lower than the total number of available modes.

base2 object2 1st inlet. Followed by three float values correspondent to the base
(global) factors. These multiply respectively: the frequency, the
decay time and the gain of all modes.

mode freqs2 object2 1st inlet. Followed by as many float values as the number of modes
which set each mode frequency.
Notice that for this message to have effect you need to refresh the
base message.

9

mode ts2 object2 1st inlet. Followed by as many float values as the number of modes
which set their decay times.
Notice that for this message to have effect you need to refresh the
base message.

mode contribs2 object2 1st inlet. Followed by one int value which specifies a pickup point,
and as many float values as the number of modes. These set the
gain (0-100 on a logarithmic scale) of each mode at the specified
pickup point.

Output

All outlets come from pickup points of object2, in progressive order from left to right.

signal object2 As many signal outlets as the number of pickup points.
Depending on the chosen output mask (see the Arguments section
below), they output either the object’s velocity or displacement.

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

list: [3×float] The first two arguments are respectively the interactor’s force stiff-
ness and damping coefficient.
The third is the mass of object1.

int object2 Number of modes.

int object2 Number of pickup points.

symbol object2 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

list: [3×float] object2 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object2 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object2 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object2 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

10

1.1.2 linpact 2modalb∼

Linear impact between two modal objects.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial strike velocity.

list: [2×float] interactor 5th inlet. The two arguments are respectively the force stiffness
and the damping coefficient.

list: [3×float] object1 6th inlet. Base (global) factors. These multiply respectively: the
frequency, the decay time and the gain of all modes.

list: [float] object1 7th inlet. As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 8th inlet. As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 9th inlet. The int value indicates the considered pickup point. The
subsequent list of float values sets the gain of each mode at the
specified pickup point.

list: [3×float] object2 10th inlet. Same as for the 6th inlet.

list: [float] object2 11th inlet. Same as for the 7th inlet.

list: [float] object2 12th inlet. Same as for the 8th inlet.

list: [int float] object2 13th inlet. Same as for the 9th inlet.

strike object1 1st inlet. Followed by a float value, sets the initial strike velocity.

nteract interactor 1st inlet. Followed by two float values which set respectively the
interactor’s force stiffness and damping coefficient.

actmodes1 object1 1st inlet. Followed by one int value which sets the number of
currently active modes. Obviously the maximum number of active
modes must be lower than the total number of available modes.

base1 object1 1st inlet. Followed by three float values correspondent to the base
(global) factors. These multiply respectively: the frequency, the
decay time and the gain of all modes.

11

mode freqs1 object1 1st inlet. Followed by as many float values as the number of modes
which set each mode frequency.
Notice that for this message to have effect you need to refresh the
base message.

mode ts1 object1 1st inlet. Followed by as many float values as the number of modes
which set their decay times.
Notice that for this message to have effect you need to refresh the
base message.

mode contribs1 object1 1st inlet. Followed by one int value which specifies a pickup point,
and as many float values as the number of modes. These set the
gain (0-100 on a logarithmic scale) of each mode at the specified
pickup point.

actmodes2 object2 1st inlet. Same as actmodes1.

base2 object2 1st inlet. Same as base1.

mode freqs2 object2 1st inlet. Same as mode freqs1.

mode ts2 object2 1st inlet. Same as mode ts1.

mode contribs2 object2 1st inlet. Same as mode contribs1.

Output

Outlets come from pickup points of both object1 and object2 (starting from left).
For example, considering that object1 has one pickup and object2 has three, the first outlet would

come from pickup0 of object1 and the subsequent ones respectively from pickup0, pickup1 and pickup2
of object2.

signal object1 As many signal outlets as the number of pickup points of object1.
Depending on the chosen output mask (see the Arguments section
below), they output either the object’s velocity or displacement.

signal object2 Same as for object1.

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

list: [2×float] interactor The two arguments are respectively the force stiffness and the
damping coefficient.

int object1 Number of modes.

int object1 Number of pickup points.

12

symbol object1 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

int object2 Number of modes.

int object2 Number of pickup points.

symbol object2 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

list: [3×float] object1 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object1 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int values indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

list: [3×float] object2 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object2 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object2 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object2 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

13

1.1.3 impact inertialb modalb∼

Non-linear impact between one inertial and one modal object.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial strike velocity.

list: [4×float] 5th inlet. The first three arguments are for the interactor. They
are respectively the force stiffness, a parameter which depends on
the contact-surface’s shape, and the dissipation coefficient.
The fourth is the mass of object1.

list: [3×float] object2 6th inlet. Base (global) factors. These multiply respectively: the
frequency, the decay time and the gain of all modes.

list: [float] object2 7th inlet. As many arguments as the number of modes.
Frequency of each mode.

list: [float] object2 8th inlet. As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object2 9th inlet. The int value indicates the considered pickup point. The
subsequent list of float values sets the gain of each mode at the
specified pickup point.

strike object1 1st inlet. Followed by a float value, sets the initial strike velocity.

nteract strikr 1st inlet. Followed by four float values. The first three set respec-
tively the interactor’s force stiffness, a parameter which depends
on the contact-surface’s shape, and the dissipation coefficient.
The fourth sets the mass of object1.

actmodes2 object2 1st inlet. Followed by one int value which sets the number of
currently active modes. Obviously the maximum number of active
modes must be lower than the total number of available modes.

base2 object2 1st inlet. Followed by three float values correspondent to the base
(global) factors. These multiply respectively: the frequency, the
decay time and the gain of all modes.

mode freqs2 object2 1st inlet. Followed by as many float values as the number of modes
which set each mode frequency.
Notice that for this message to have effect you need to refresh the
base message.

14

mode ts2 object2 1st inlet. Followed by as many float values as the number of modes
which set their decay times.
Notice that for this message to have effect you need to refresh the
base message.

mode contribs2 object2 1st inlet. Followed by one int value which specifies a pickup point,
and as many float values as the number of modes. These set the
gain (0-100 on a logarithmic scale) of each mode at the specified
pickup point.

Output

All outlets come from pickup points of object2, in progressive order from left to right.

signal object2 As many signal outlets as the number of pickup points.
Depending on the chosen output mask (see the Arguments section
below), they output either the object’s velocity or displacement.

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

list: [4×float] The first three arguments are for the interactor. They are respec-
tively the force stiffness, a parameter which depends on the contact
surface’s shape, and the dissipation coefficient.
The fourth is the mass of object1.

int object2 Number of modes.

int object2 Number of pickup points.

symbol object2 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

list: [3×float] object2 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object2 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object2 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object2 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

15

1.1.4 impact 2modalb∼

Non-linear impact between two modal objects.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial strike velocity.

list: [3×float] interactor 5th inlet. The three arguments are respectively the force stiffness,
a parameter which depends on the contact-surface’s shape, and
the dissipation coefficient.

list: [3×float] object1 6th inlet. Base (global) factors. These multiply respectively: the
frequency, the decay time and the gain of all modes.

list: [float] object1 7th inlet. As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 8th inlet. As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 9th inlet. The int value indicates the considered pickup point. The
subsequent list of float values sets the gain of each mode at the
specified pickup point.

list: [3×float] object2 10th inlet. Same as for the 6th inlet.

list: [float] object2 11th inlet. Same as for the 7th inlet.

list: [float] object2 12th inlet. Same as for the 8th inlet.

list: [int float] object2 13th inlet. Same as for the 9th inlet.

strike object1 1st inlet. Followed by a float value, sets the initial strike velocity.

nteract interactor 1st inlet. Followed by three float values which set respectively the
force stiffness, a parameter which depends on the contact-surface’s
shape, and the dissipation coefficient.

actmodes1 object1 1st inlet. Followed by one int value which sets the number of
currently active modes. Obviously the maximum number of active
modes must be lower than the total number of available modes.

base1 object1 1st inlet. Followed by three float values correspondent to the base
(global) factors. These multiply respectively: the frequency, the
decay time and the gain of all modes.

16

mode freqs1 object1 1st inlet. Followed by as many float values as the number of modes
which set each mode frequency.
Notice that for this message to have effect you need to refresh the
base message.

mode ts1 object1 1st inlet. Followed by as many float values as the number of modes
which set their decay times.
Notice that for this message to have effect you need to refresh the
base message.

mode contribs1 object1 1st inlet. Followed by one int value which specifies a pickup point,
and as many float values as the number of modes. These set the
gain (0-100 on a logarithmic scale) of each mode at the specified
pickup point.

actmodes2 object2 1st inlet. Same as actmodes1.

base2 object2 1st inlet. Same as base1.

mode freqs2 object2 1st inlet. Same as mode freqs1.

mode ts2 object2 1st inlet. Same as mode ts1.

mode contribs2 object2 1st inlet. Same as mode contribs1.

Output

Outlets come from pickup points of both object1 and object2 (starting from left).
For example, considering that object1 has one pickup and object2 has three, the first outlet would

come from pickup0 of object1 and the subsequent ones respectively from pickup0, pickup1 and pickup2
of object2.

signal object1 As many signal outlets as the number of pickup points of object1.
Depending on the chosen output mask (see the Arguments section
below), they output either the object’s velocity or displacement.

signal object2 Same as for object1.

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

list: [3×float] interactor The three arguments are respectively the force stiffness, a param-
eter which depends on the contact-surface’s shape, and the dissi-
pation coefficient.

int object1 Number of modes.

int object1 Number of pickup points.

17

symbol object1 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

int object2 Number of modes.

int object2 Number of pickup points.

symbol object2 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

list: [3×float] object1 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object1 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

list: [3×float] object2 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object2 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object2 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object2 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

18

1.1.5 impact inertialb wg∼

Non-linear impact between one inertial and one waveguide object.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial strike velocity.

list: [4×float] 5th inlet. The first three arguments are for the interactor. They
are respectively the force stiffness, a parameter which depends on
the contact-surface’s shape, and the dissipation coefficient.
The fourth is the mass of object1.

float object2 6th inlet. Normalized (0-1) contact position along string’s length.

float object2 7th inlet. String’s length in meters.

float object2 8th inlet. String’s tension in Newtons.

float object2 9th inlet. String’s mass in kilograms.

strike object1 1st inlet. Followed by a float value, sets the initial strike velocity.

nteract strikr 1st inlet. Followed by four float values. The first three set respec-
tively the interactor’s force stiffness, a parameter which depends
on the contact-surface’s shape, and the dissipation coefficient.
The fourth sets the mass of object1.

contact pos2 object2 1st inlet. Followed by a float value, sets the normalized (0-1)
contact position along the string.

str length2 object2 1st inlet. Followed by a float value, sets the string’s length in
meters.

str tension2 object2 1st inlet. Followed by a float value, sets the string’s tension in
Newtons.

str mass2 object2 1st inlet. Followed by a float value, sets the string’s mass in kilo-
grams.

Output

The outlet comes from the only pickup point of object2.

19

signal object2 Depending on the chosen output mask (see the Arguments section
below), the outlet outputs either the object’s velocity or displace-
ment at the contact position.

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

list: [4×float] The first three arguments are for the interactor. They are respec-
tively the force stiffness, a parameter which depends on the contact
surface’s shape, and the dissipation coefficient.
The fourth is the mass of object1.

float object2 Normalized (0-1) contact position along string’s length.

float object2 String’s length in meters.

float object2 String’s tension in Newtons.

float object2 String’s mass in kilograms.

symbol object2 Mask for the output of pickup point: ’1’ sets the pickup point to
output the object’s velocity, while anything else (e.g. ’d’) sets it
to output the object’s displacement.

20

1.1.6 impact modalb wg∼

Non-linear impact between one modal and one waveguide object.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial strike velocity.

list: [3×float] interactor 5th inlet. The three arguments are respectively the force stiffness,
a parameter which depends on the contact-surface’s shape, and
the dissipation coefficient.

list: [3×float] object1 6th inlet. Base (global) factors. These multiply respectively: the
frequency, the decay time and the gain of all modes.

list: [float] object1 7th inlet. As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 8th inlet. As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 9th inlet. The int value indicates the considered pickup point. The
subsequent list of float values sets the gain of each mode at the
specified pickup point.

float object2 10th inlet. Normalized (0-1) contact position along string’s length.

float object2 11th inlet. String’s length in meters.

float object2 12th inlet. String’s tension in Newtons.

float object2 13th inlet. String’s mass in kilograms.

strike object1 1st inlet. Followed by a float value, sets the initial strike velocity.

nteract interactor 1st inlet. Followed by three float values which set respectively the
force stiffness, a parameter which depends on the contact-surface’s
shape, and the dissipation coefficient.

actmodes1 object1 1st inlet. Followed by one int value which sets the number of
currently active modes. Obviously the maximum number of active
modes must be lower than the total number of available modes.

base1 object1 1st inlet. Followed by three float values correspondent to the base
(global) factors. These multiply respectively: the frequency, the
decay time and the gain of all modes.

21

mode freqs1 object1 1st inlet. Followed by as many float values as the number of modes
which set each mode frequency.
Notice that for this message to have effect you need to refresh the
base message.

mode ts1 object1 1st inlet. Followed by as many float values as the number of modes
which set their decay times.
Notice that for this message to have effect you need to refresh the
base message.

mode contribs1 object1 1st inlet. Followed by one int value which specifies a pickup point,
and as many float values as the number of modes. These set the
gain (0-100 on a logarithmic scale) of each mode at the specified
pickup point.

contact pos2 object2 1st inlet. Followed by a float value, sets the normalized (0-1)
contact position along the string.

str length2 object2 1st inlet. Followed by a float value, sets the string’s length in
meters.

str tension2 object2 1st inlet. Followed by a float value, sets the string’s tension in
Newtons.

str mass2 object2 1st inlet. Followed by a float value, sets the string’s mass in kilo-
grams.

Output

Outlets come from pickup points of both object1 and object2 (starting from left). The rightmost
one comes from the only pickup point of object2.

signal object1 As many signal outlets as the number of pickup points of object1.
Depending on the chosen output mask (see the Arguments section
below), they output either the object’s velocity or displacement.

signal object2 Depending on the chosen output mask (see the Arguments section
below), the rightmost outlet outputs either the object’s velocity
or displacement at the contact position.

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

list: [3×float] interactor The three arguments are respectively the force stiffness, a param-
eter which depends on the contact-surface’s shape, and the dissi-
pation coefficient.

int object1 Number of modes.

22

int object1 Number of pickup points.

symbol object1 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

list: [3×float] object1 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object1 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

float object2 Normalized (0-1) contact position along string’s length.

float object2 String’s length in meters.

float object2 String’s tension in Newtons.

float object2 String’s mass in kilograms.

symbol object2 Mask for the output of pickup point: ’1’ sets the pickup point to
output the object’s velocity, while anything else (e.g. ’d’) sets it
to output the object’s displacement.

23

1.1.7 friction 2modalb∼

Non-linear friction between two modal objects.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial rubbing velocity.

list: [9×float] 5th inlet. The nine arguments are respectively: the mean bristles-
stiffness, the mean bristles-dissipation, a viscosity coefficient,
the dynamic-friction coefficient, the static-friction coefficient, the
break-away coefficient, the Stribeck velocity, the perpendicular
pressure which object1 applies on object2, and finally the noise
intensity.

list: [3×float] object1 6th inlet. Base (global) factors. These multiply respectively: the
frequency, the decay time and the gain of all modes.

list: [float] object1 7th inlet. As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 8th inlet. As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 9th inlet. The int value indicates the considered pickup point. The
subsequent list of float values sets the gain of each mode at the
specified pickup point.

list: [3×float] object2 10th inlet. Same as for the 6th inlet.

list: [float] object2 11th inlet. Same as for the 7th inlet.

list: [float] object2 12th inlet. Same as for the 8th inlet.

list: [int float] object2 13th inlet. Same as for the 9th inlet.

start rubbing object1 1st inlet. Followed by a float value, sets the initial rubbing velocity.

nteract pressr 1st inlet. Followed by nine float values which set respectively: the
mean bristles-stiffness, the mean bristles-dissipation, a viscosity
coefficient, the dynamic-friction coefficient, the static-friction co-
efficient, the break-away coefficient, the Stribeck velocity, the per-
pendicular pressure which object1 applies on object2, and finally
the noise intensity.

24

actmodes1 object1 1st inlet. Followed by one int value which sets the number of
currently active modes. Obviously the maximum number of active
modes must be lower than the total number of available modes.

base1 object1 1st inlet. Followed by three float values correspondent to the base
(global) factors. These multiply respectively: the frequency, the
decay time and the gain of all modes.

mode freqs1 object1 1st inlet. Followed by as many float values as the number of modes
which set each mode frequency.
Notice that for this message to have effect you need to refresh the
base message.

mode ts1 object1 1st inlet. Followed by as many float values as the number of modes
which set their decay times.
Notice that for this message to have effect you need to refresh the
base message.

mode contribs1 object1 1st inlet. Followed by one int value which specifies a pickup point,
and as many float values as the number of modes. These set the
gain (0-100 on a logarithmic scale) of each mode at the specified
pickup point.

actmodes2 object2 1st inlet. Same as actmodes1.

base2 object2 1st inlet. Same as base1.

mode freqs2 object2 1st inlet. Same as mode freqs1.

mode ts2 object2 1st inlet. Same as mode ts1.

mode contribs2 object2 1st inlet. Same as mode contribs1.

Output

Outlets come from pickup points of both object1 and object2 (starting from left).
For example, considering that object1 has one pickup and object2 has three, the first outlet would

come from pickup0 of object1 and the subsequent ones respectively from pickup0, pickup1 and pickup2
of object2.

signal object1 As many signal outlets as the number of pickup points of object1.
Depending on the chosen output mask (see the Arguments section
below), they output either the object’s velocity or displacement.

signal object2 Same as for object1.

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

25

list: [9×float] The nine arguments are respectively: the mean bristles-stiffness,
the mean bristles-dissipation, a viscosity coefficient, the dynamic-
friction coefficient, the static-friction coefficient, the break-away
coefficient, the Stribeck velocity, the perpendicular pressure which
object1 applies on object2, and finally the noise intensity.

int object1 Number of modes.

int object1 Number of pickup points.

symbol object1 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

int object2 Number of modes.

int object2 Number of pickup points.

symbol object2 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

list: [3×float] object1 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object1 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

list: [3×float] object2 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object2 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object2 As many arguments as the number of modes.
Decay time of each mode.

26

list: [int float] object2 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

27

1.1.8 friction modalb wg∼

Non-linear friction between one modal and one waveguide object.

Input

signal object1 1st inlet. External force applied to object1.

signal object2 2nd inlet. External force applied to object2.

signal 3rd inlet. Additional displacement offset between the objects.

float object1 4th inlet. Initial bowing velocity.

list: [9×float] 5th inlet. The nine arguments are respectively: the mean bristles-
stiffness, the mean bristles-dissipation, a viscosity coefficient,
the dynamic-friction coefficient, the static-friction coefficient, the
break-away coefficient, the Stribeck velocity, the perpendicular
pressure which object1 applies on object2, and finally the noise
intensity.

list: [3×float] object1 6th inlet. Base (global) factors. These multiply respectively: the
frequency, the decay time and the gain of all modes.

list: [float] object1 7th inlet. As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 8th inlet. As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 9th inlet. The int value indicates the considered pickup point. The
subsequent list of float values sets the gain of each mode at the
specified pickup point.

float object2 10th inlet. Normalized (0-1) contact position along string’s length.

float object2 11th inlet. String’s length in meters.

float object2 12th inlet. String’s tension in Newtons.

float object2 13th inlet. String’s mass in kilograms.

start bowing object1 1st inlet. Followed by a float value, sets the initial bowing velocity.

nteract pressr 1st inlet. Followed by nine float values which set respectively: the
mean bristles-stiffness, the mean bristles-dissipation, a viscosity
coefficient, the dynamic-friction coefficient, the static-friction co-
efficient, the break-away coefficient, the Stribeck velocity, the per-
pendicular pressure which object1 applies on object2, and finally
the noise intensity.

28

actmodes1 object1 1st inlet. Followed by one int value which sets the number of
currently active modes. Obviously the maximum number of active
modes must be lower than the total number of available modes.

base1 object1 1st inlet. Followed by three float values correspondent to the base
(global) factors. These multiply respectively: the frequency, the
decay time and the gain of all modes.

mode freqs1 object1 1st inlet. Followed by as many float values as the number of modes
which set each mode frequency.
Notice that for this message to have effect you need to refresh the
base message.

mode ts1 object1 1st inlet. Followed by as many float values as the number of modes
which set their decay times.
Notice that for this message to have effect you need to refresh the
base message.

mode contribs1 object1 1st inlet. Followed by one int value which specifies a pickup point,
and as many float values as the number of modes. These set the
gain (0-100 on a logarithmic scale) of each mode at the specified
pickup point.

contact pos2 object2 1st inlet. Followed by a float value, sets the normalized (0-1)
contact position along the string.

str length2 object2 1st inlet. Followed by a float value, sets the string’s length in
meters.

str tension2 object2 1st inlet. Followed by a float value, sets the string’s tension in
Newtons.

str mass2 object2 1st inlet. Followed by a float value, sets the string’s mass in kilo-
grams.

Output

Outlets come from pickup points of both object1 and object2 (starting from left). The rightmost
one comes from the only pickup point of object2.

signal object1 As many signal outlets as the number of pickup points of object1.
Depending on the chosen output mask (see the Arguments section
below), they output either the object’s velocity or displacement.

signal object2 Depending on the chosen output mask (see the Arguments section
below), the rightmost outlet outputs either the object’s velocity
or displacement at the contact position.

29

Arguments

All arguments are mandatory. They initialize the two objects and the interactor with their physical-
geometric properties. In progressive order they are:

list: [9×float] The nine arguments are respectively: the mean bristles-stiffness,
the mean bristles-dissipation, a viscosity coefficient, the dynamic-
friction coefficient, the static-friction coefficient, the break-away
coefficient, the Stribeck velocity, the perpendicular pressure which
object1 applies on object2, and finally the noise intensity.

int object1 Number of modes.

int object1 Number of pickup points.

symbol object1 As many arguments as the number of pickup points.
Mask for the output of each pickup point: ’1’ sets the pickup point
to output the object’s velocity, while anything else (e.g. ’d’) sets
it to output the object’s displacement.

list: [3×float] object1 Base (global) factors. These multiply respectively: the frequency,
the decay time and the gain of all modes.

list: [float] object1 As many arguments as the number of modes.
Frequency of each mode.

list: [float] object1 As many arguments as the number of modes.
Decay time of each mode.

list: [int float] object1 As many lists as the number of pickup points. The length of each
list is equal to the number of modes +1.
The int value indicates the considered pickup point. The subse-
quent list of float values sets the gain of each mode at the specified
pickup point.

float object2 Normalized (0-1) contact position along string’s length.

float object2 String’s length in meters.

float object2 String’s tension in Newtons.

float object2 String’s mass in kilograms.

symbol object2 Mask for the output of pickup point: ’1’ sets the pickup point to
output the object’s velocity, while anything else (e.g. ’d’) sets it
to output the object’s displacement.

30

1.2 Liquids

Low level models of basic events responsible for acoustic emission in liquids are considered. In
particular, we consider the formation of single resonating cavities (bubbles) observed in dripping,
boiling, or pouring.

Bubble model

The formation of radially oscillating bubbles under the surface of a liquid volume is modeled assum-
ing that the bubble cavity acts as a simple Helmoltz resonator, its impulse response being a damped
sinusoid with time-varying frequency [5]. One of the most common events involving the formation of
radially oscillating bubbles under the surface of a liquid volume is dripping, the falling of a drop or
an object into a quiescent liquid. In the simplest case, when the initial impact sound is neglected and
when there is no crown formation following the initial impact, dripping can be represented by a single
bubble event.

However, the more the initial impact sound is perceivable and the cavity of the bubble becomes larger
(e.g., for large impacting mass), the less the simple single bubble sound model becomes adequate to
represent the dripping event. This is even more evident when large objects or drops falling into a
resting liquid generate many secondary bubbles and droplets events due to the mass displaced by the
principal impact event (splashing).

The external onebubble∼ provides controls for the bubble radius, and for the slope of the frequency
rise due to radius change in time.

Figure 1.3: Single bubble help patch

31

1.2.1 onebubble∼

Single radially oscillating bubble.

Input

bang 1st inlet. Bubble event trigger.

float 2nd inlet. Bubble initial radius.

float 2nd inlet. Frequency slope.

radius 1st inlet. Followed by a float value, sets the initial bubble radius.

slope 1st inlet. Followed by a float value, sets the frequency slope.

Output

Radiated pressure.

signal Signal outlet.

Arguments

None.

32

2 Higher-level models

This chapter covers algorithms which exploit the low-level models seen in Chapter 1. Notice that the
expression “higher-level” indicates more complex and structured algorithms, corresponding to some-
what large-scale events, processes or textures. In a way, that matches the meaning of the expression
“high-level” in Computer Science, where it often denotes languages similar to those of human beings.
Of course, in order to achieve that, high-level languages are indeed more complex and structured than
low-level ones.

The higher-level algorithms here discussed implement temporal patterns or other physically con-
sistent controls (e.g. external forces) superimposed to low-level models. These algorithms are made
available either by dedicated externals, or by using Max/MSP visual programming, that is as patches.
In the former case, the external can be self-contained - that is it implements both the control and the
low-level synthesis layers - or just meant to drive other externals (in which case it is labeled with a
final tilde ∼) - that is it implements only the control layer (in which case it is labeled without a final
tilde ∼).

2.1 Solids

2.1.1 Bouncing

Bouncing is a sound process resulting from repeated macro-impact events.

Figure 2.1: Bouncing (falling object) patch

33

The Max/MSP patch (BOUNCING.mxb) (Fig. 2.1) simulates the case of a falling object - a typical situ-
ation in which bouncing happens. There, an instance of the low-level external impact inertialb modalb∼
is driven by a control layer implemented into the sub-patch dropper (which lies inside the sub-patch
sub-bouncing).

The available high-level user’s controls are:

falling height: sets the time interval between the first two bounces.

object elasticity: sets the acceleration and deceleration rate of bounces.

object shape regularity: sets the level of randomness to be applied to bounces. This corresponds to
the symmetry properties of the falling object.

object weight: sets the maximum hitting velocity.

34

2.1.2 control crump

Crumpling is a widely general-purpose sonification paradigm based on the control of atomic sonic
events (for instance impacts). The crumpling process governs the timbre and dynamics of every atomic
event as well as the temporal gap in between two successive events.
• Concerning dynamics and time, their control is exerted by statically setting macroscopic param-
eters of specific stochastic laws which, in their turn, produce sequences of micro events whose
overall intensity and temporal density follow directly from the parameter values. However, every
sequence individually exhibits statistical variability.
• Concerning timbre, its control follows by informing the model with microscopic features (viz. the
nature of the atomic sounds) along with changing (usually coarse) structural evolutionary features
of the physical model dynamically along time.

Detailed explanations about the physical nature of this sonification paradigm, in particular the cor-
respondence existing between an atomic crumpling event and its representation as an impact between
a hammering and a resonating object, can be found in [3].

Figure 2.2: Crumpling example patch

The external control crump implements such controls and is expressly meant to drive impact events
modeled by two instances of impact inertialb modalb∼ externals in which both object2s (modal ob-
jects) have two resonating modes. Hence it controls two couples of interacting objects (left: ob-
ject1 and object2, right object1 and object2). In Fig. 2.2 is represented the provided example patch
(CRUMPLING.mxb) in which control crump drives the low-level sound synthesis models.

Input

bang 1st inlet. A new atomic crumpling event is triggered.

reset 1st inlet. The crumpling process is reset by restoring initial energy
and settings.

35

float 2nd inlet. Size of the crumpling. Initializes the energy.

float 3rd inlet. Force of the crumpling.

float 4th inlet. Smoothness of the crumpling.

list: [2×float] 5th inlet. Sets the range in which the frequency-factors (multi-
plying coefficients for resonances) of both object2s vary along the
duration of crumpling process.
The two float arguments are respectively the initial and the final
values of the coefficients.

list: [4×float] 6th inlet. Sets the range in which the decay times of the two modes
of both object2s vary along the duration of crumpling process.
The four float arguments are, in order: the initial and the final
values of the decay for the first mode of both object2s; the initial
and the final values of the decay for the second mode of both
object2s.

list: [2×float] 7th inlet. Sets the range in which the masses of both object1s vary
along the duration of crumpling process.
The two float arguments are the initial and the final values of the
masses.

Output

Outlets provide controls to two instances of impact inertialb modalb∼ externals, where both object2s
have two resonating modes.

float 1st outlet. Delay value after which to back-bang the control crump
external itself by means of a loopback containing a delay object.

float 2nd outlet. Mass of the left object1.

float 3rd outlet. Frequency-factor of the left object2.

float 4th outlet. Decay value of the left object2’s first mode.

float 5th outlet. Decay value of the left object2’s second mode.

float 6th outlet. Energy of the signal outcoming from the left object2.

float 7th outlet. Mass of the right object1.

float 8th outlet. Frequency-factor of the right object2.

float 9th outlet. Decay value of the right object2’s first mode.

float 10th outlet. Decay value of the right object2’s second mode.

float 11th outlet. Energy of the signal outcoming from the right object2.

36

Arguments

All arguments are mandatory.

float Crumpling size.

float Crumpling force.

float Crumpling smoothness.

list: [2×float] Default range (initial and final values) of the frequency-factors of
both object2s.

list: [4×float] Default range of the decay times. The four float arguments are,
in order: the initial and the final values of the decay for the first
mode of both object2s; the initial and the final values of the decay
for the second mode of both object2s.

list: [2×float] Default range (initial and final values) of the mass of the both
object1s.

list: [2×float] Cutoff frequency sweep range (initial and final values). It is meant
to be connected to a lowpass filter with controllable cutoff fre-
quency.

37

2.2 Liquids

High level models of two classes of complex liquid events are considered: 1. the formation of high
quantities of bubbles observed in boiling, frying, streaming or pouring, and 2. the temporal pattern
involving initial impacts, principal bubble formation, and secondary droplets, occurring in splash-like
events.

Boiling, frying, streaming, pouring

The single resonating bubble model is well suited to serve as the elementary brick to represent
populations of bubbles, whose parameters and triggering instants are designed according to given
statistical distributions. Typical phenomena in which bubble distributions are observed are boiling or
frying liquids, water streaming, pouring of a liquid into a container or into another quiescent liquid,
breaking waves.

The external bubblestream∼ provides controls for bubble triggering frequency, for the mean and vari-
ance of radius and radius slope values, for the variance of bubbles amplitude, and for the smoothness
of bubbles onset. A sample patch is provided which contains presets for boiling, frying, and running
water sounds.

Figure 2.3: Bubblestream patch

38

2.2.1 bubblestream∼

Population of bubbles.

Input

bang 1st inlet. Toggles the bubbles flow.

float 2nd inlet. Mean bubbles radius.

float 3rd inlet. Variance of bubbles radius.

float 4th inlet. Mean radius slope.

float 5th inlet. Variance of radius slope.

float 6th inlet. Mean amplitude.

float 7th inlet. Bubbles onset smoothness.

float 8th inlet. Bubbles frequency.

Output

Radiated sound pressure.

Arguments

None.

39

Dripping, splashing

As an attempt to reproduce the temporal structure of a splashing sound, we choose to design it
as a sequence of three distinct low-level events: 1. a short initial impact sound, 2. a bubble sound
modeled as detailed in the low-level models section, and 3. a secondary droplets event texture. In the
present implementation, sampled waveforms are used to reproduce the initial impact sound and the
final sound due to droplets formation, whereas the principal bubble formation is based on the single
bubble model.

The external splash∼ provides controls for gain balance of the single components, and for the
parameters of the principal bubble sound. A sample patch is provided which contains presets for
single bubble and complete splashing sounds.

Figure 2.4: Splash patch

40

2.2.2 splash∼

Splash or dripping event.

Input

bang 1st inlet. Splash event trigger.

float 2nd inlet. Principal bubble initial radius.

float 2nd inlet. Radius slope.

float 3d inlet. Initial impact event gain.

float 4th inlet. Principal bubble gain.

float 5th inlet. Droplet event gain.

Output

Radiated pressure.

Arguments

None.

41

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If

42

a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any
Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document straight-
forwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

43

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Docu-
ment, numbering more than 100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version
of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title

44

Page. If there is no section Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the sec-
tion, and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorse-
ments”.

45

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond
what the individual works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may

46

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that

a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

47

References

[1] N. Misdariis, R. Caussé, L. Dandrel, J. Bensoam, and C. Vergez. Modalys, un outil pour le design
sonore. In 1ères Journées du Design Sonore, Paris, 2002.

[2] S. Papetti. Sintesi audio in tempo-reale mediante modelli waveguide di risonatori e modelli non-
lineari di contatto. Master’s Thesis in Computer Engineering, University of Padua, A.A. 2004/2005.

[3] D. Rocchesso and F. Fontana, editors. The Sounding Object. Mondo Estremo, 2003. Freely
available from http://www.soundobject.org/.

[4] J. O. Smith. Principles of digital waveguide models of musical instruments. In M. Kahrs and
K. Brandeburg, editors, Applications of DSP to Audio and Acoustic, pages 417–466. Kluwer Aca-
demic Publishers, 2002.

[5] K. van den Doel. Physically-based models for liquid sounds. In Proc. ICAD 04, Sydney, July 2004.

48

http://www.soundobject.org/

	Low-level models
	Solids contact
	linpact_inertialb_modalbheightwidthwidthheight
	linpact_2modalbheightwidthwidthheight
	impact_inertialb_modalbheightwidthwidthheight
	impact_2modalbheightwidthwidthheight
	impact_inertialb_wgheightwidthwidthheight
	impact_modalb_wgheightwidthwidthheight
	friction_2modalbheightwidthwidthheight
	friction_modalb_wgheightwidthwidthheight

	Liquids
	onebubbleheightwidthwidthheight

	Higher-level models
	Solids
	Bouncing
	control_crumpheightwidthwidthheight

	Liquids
	bubblestreamheightwidthwidthheight
	splashheightwidthwidthheight

	GNU Free Documentation License
	References

